改定不完全コレスキー前処理 付CG法の大規模行列での特性

2023年7月12日 後 保範 (ISCPC)

1

1. はじめに

- 拡散方程式における差分法の反復解法
- 不完全コレスキー(IC)にαを追加前処理CG法
- MICCG法の収束の良いパラメータαの自動推定
- MICCG法はICCG法より圧倒的に収束が速い
- 最良パラメータωのSSOR前処理付きCG法と比較
 - 2次元: 反復回数が1/1.2~1/4.7に減少
 - 3次元: 反復回数が1/1.1~1/3.1に減少
 - 大規模、複雑なほどMICCG法の効果が大

2. 前処理付き共役勾配法(CG)

- ・共役勾配法(CG)は対称疎行列用の反復解法
- •M行列(拡散方程式)は前処理で収束が良くなる
- 前処理はSSOR、IC(不完全コレスキー)が有名
- MIC(改定IC)はICにパラメータ(α)を追加
- MIC, SSOR, IC前処理ともCG法の反復計算は同じ
- αは分解誤差を対角で補正:1-αは対角との差
- 従来 α = 0.98前後。規模大で1-αは小さくなる
- ・パラメータαを分割数で自動作成を提案

2.1 前処理付きCG法の手順

初期値x=0, 行列Aを不完全LDL^T分解する r=b-Ax, p=(LDL^T)⁻¹r, µ₁=(r,p) 収束するまで以下を反復計算

q=Ap, $\alpha = \mu_1/(p, q)$ x=x+ αp , r=r- αq q=(LDL^T)⁻¹r, μ_2 =(r, q) $\beta = \mu_2/\mu_1$, $\mu_1 = \mu_2$ p=q+ βp

2.3 3次元差分法による行列

2.4 q=(LDL^T)⁻¹rの計算(共通)

```
for (k=0; k<n; k++)
   \{ q[k] = D[k]*(r[k] - A2[k]*q[k-1]) \}
                       - A1[k]*q[k-nx]
                       - A0[k]*q[k-nxy] );
for (k=n-1; k>=0; k--)
   \{ q[k] = D[k] * (A2[k+1]*q[k+1])
                   + A1[k+nx]*q[k+nx]
                   + AO[k+nxy]*q[k+nxy] );
```

2.5 不完全LDL^T分解(SSOR)

• SSORの加速係数ω(<2.0)、Dを求める。

注) 不完全LDL^T分解では対角を除くLは A0, A1, A2をそのまま使用(IC, MICも)

2.6 不完全LDL^T分解(IC)

・パラメータ無し、Dを求める。分解誤差無視。

2.7 不完全LDL^T分解(MIC)

・パラメータα(<1.0)、Dを求める。α*誤差を対角に

2.8 MICの考え方(2次元の例)

3 計算対象(環境)

•計算機

Intel Core i7 6700k, 4Ghz, 8GBメモリ

- OS: Windows10
- ・コンパイラ

Cygwin Ver. 2.7 gcc, -03

- ・拡散方程式(-div(k・grad(φ))=f)の差分法

 離散化(2次元、3次元)
- ・収束判定(下記となる反復回数)
 ||Ax-b||₂ / ||b||₂ <= 1.0e-8

3.1 2次元対象モデル

3.2 係数と境界条件

・拡散方程式(-div(grad(k・ ϕ))の係数

k = 0.5	k = 0.1	k = 1.0
f = 10	f = 0	f = 0

- 境界条件
 - BO: 全て固定境界
 - B2: 2辺(低位)対称、2辺固定境界
 - B4: 各辺対称境界で、1点だけ固定境界

3.3 3次元対象モデル

3.4 係数と境界条件

・拡散方程式(-div(grad(k · ϕ))の係数

k = 0.5	k = 0.1	k = 1.0
f= 10	f = 0	f = 0

- 境界条件
 - BO: 全て固定境界
 - B3: 3面(低位)対称、3面固定境界
 - B6: 各面対称境界で、1点だけ固定境界

4 MICCG法のパラメータ α

- 不完全コレスキー分解(IC)は対角だけ計算
- 非ゼロ要素の位置は元と分解後で一致する
- ・ 非ゼロ要素以外の位置に誤差が発生する
- ・MICは非対角R=LDL^T-AをD=D-αRとして処理
- ・収束が良いαの自動算出を計画
- ・規模大で1の手前のαは収束が大きく変化
- 1-αと分割数はほぼ対数関係にあると判明
- 分割数で収束の良いαの算出に成功

4.1 αとMICCG収束状況(2次元)

4.2 対数での収束状況(2次元)

4.3 分割数と最適α(2次元MIC)

4.4 適用 α の計算(2 次元)

- •MICCGに適用するパラメータ α の計算
- x, y方向の分割数をnx, nyとする
- $x = \log_{10}(nx \times ny), y = \log_{10}(1/(1-\alpha)) と t a$
- y=0.98x-1.60の関係が前図から得られる
- •nx, nyからx=log₁₀(nx×ny)を求める
- y=0.98x-1.60にxを与えyの値を求める
- 1/d=1/(1-α)=10^yからdを求める
- $\alpha = 1 d \in MICCG o n = \lambda \mu \alpha e 求める$

4.5 分割数と最適α(3次元MIC)

4.6 適用 α の計算(3 次元)

- •MICCGに適用するパラメータ α の計算
- x, y, z方向の分割数をnx, ny, nyとする
- $x = \log_{10}(nx \times ny \times nz), y = \log_{10}(1/(1-\alpha)) と t る$
- y=0.66x-1.19の関係が前図から得られる
- •nx, ny, nyからx=log₁₀(nx×ny×nz)を求める
- y=0.66x-1.19にxを与えyの値を求める
- 1/d=1/(1-α)=10^yからdを求める
- $\alpha = 1 d \in MICCG$ のパラメータ $\alpha \in x$ める

5 MIC, SSOR, IC前処理の比較

- ・拡散方程式の差分法の反復法(Ax=b)で比較
- 比較は||Ax-b||₂/||b||₂<10⁻⁸となる反復数
- MIC, SSOR, ICの前処理付きCG法で比較
- SSORは加速係数ωを1/200単位で変化させ、
 反復数が最も少ないものを使用
- MICはパラメータ α を分割数で自動設定の
 反復数を使用
- ICはパラメータ無し

NAS2023

5.1 M2A-B2での比較結果

5.1 M2B-B2での比較結果

5.1 M2C-B2での比較結果

5.1 M2D-B2での比較結果

5.2 M2A-B4での比較結果

5.3 M3A-B3での比較結果

5.3 M3B-B3での比較結果

5.3 M3C-B3での比較結果

5.3 M3D-B3での比較結果

5.4 M3A-B6での比較結果

6 おわりに

- MICCG法のパラメータ α を自動設定できた
- ・分割数と1-αは対数で比例と判明
- MICCG法はICCG法より圧倒的に有利
- MICCG法とSSOR前処理付きCG法の比較 最良ωのSSORより自動αのMICが有利 分割数が大きいほどMICCG法の効果が大 収束が遅い(複雑)ものほどMICCG法の効果大 2次元では最大で4.7倍の効果(5000×5000) 3次元では最大で3.1倍の効果(400×400×400)